java设计模式详解之结构型模式(图文代码)(二)

2017年09月27日 08:36 | 2782次浏览

我们在上一篇讲解了工厂方法模式、抽象工厂模式、单例模式、建造者模式、原型模式五种设计模式,这章开始,我将讲下7种结构型模式:适配器模式、装饰模式、代理模式、外观模式、桥接模式、组合模式、享元模式。其中对象的适配器模式是各种模式的起源,我们看下面的图:

6、适配器模式(Adapter)

 适配器模式将某个类的接口转换成客户端期望的另一个接口表示,目的是消除由于接口不匹配所造成的类的兼容性问题。主要分为三类:类的适配器模式、对象的适配器模式、接口的适配器模式。首先,我们来看看类的适配器模式,先看类图:

核心思想就是:有一个Source类,拥有一个方法,待适配,目标接口时Targetable,通过Adapter类,将Source的功能扩展到Targetable里,看代码:

public class Source {

	public void method1() {
		System.out.println("this is original method!");
	}
}


public interface Targetable {

	/* 与原类中的方法相同 */
	public void method1();

	/* 新类的方法 */
	public void method2();
}


public class Adapter extends Source implements Targetable {

	@Override
	public void method2() {
		System.out.println("this is the targetable method!");
	}
}

Adapter类继承Source类,实现Targetable接口,下面是测试类:

public class AdapterTest {

	public static void main(String[] args) {
		Targetable target = new Adapter();
		target.method1();
		target.method2();
	}
}

输出:

this is original method!

this is the targetable method!

这样Targetable接口的实现类就具有了Source类的功能。

对象的适配器模式

基本思路和类的适配器模式相同,只是将Adapter类作修改,这次不继承Source类,而是持有Source类的实例,以达到解决兼容性的问题。看图:

只需要修改Adapter类的源码即可:

public class Wrapper implements Targetable {

	private Source source;
	
	public Wrapper(Source source){
		super();
		this.source = source;
	}
	@Override
	public void method2() {
		System.out.println("this is the targetable method!");
	}

	@Override
	public void method1() {
		source.method1();
	}
}

测试类:

public class AdapterTest {

	public static void main(String[] args) {
		Source source = new Source();
		Targetable target = new Wrapper(source);
		target.method1();
		target.method2();
	}
}

输出与第一种一样,只是适配的方法不同而已。

第三种适配器模式是接口的适配器模式,接口的适配器是这样的:有时我们写的一个接口中有多个抽象方法,当我们写该接口的实现类时,必须实现该接口的所有方法,这明显有时比较浪费,因为并不是所有的方法都是我们需要的,有时只需要某一些,此处为了解决这个问题,我们引入了接口的适配器模式,借助于一个抽象类,该抽象类实现了该接口,实现了所有的方法,而我们不和原始的接口打交道,只和该抽象类取得联系,所以我们写一个类,继承该抽象类,重写我们需要的方法就行。看一下类图:

这个很好理解,在实际开发中,我们也常会遇到这种接口中定义了太多的方法,以致于有时我们在一些实现类中并不是都需要。看代码:

public interface Sourceable {
	
	public void method1();
	public void method2();
}

抽象类Wrapper2:

public abstract class Wrapper2 implements Sourceable{
	
	public void method1(){}
	public void method2(){}
}


public class SourceSub1 extends Wrapper2 {
	public void method1(){
		System.out.println("the sourceable interface's first Sub1!");
	}
}


public class SourceSub2 extends Wrapper2 {
	public void method2(){
		System.out.println("the sourceable interface's second Sub2!");
	}
}


public class WrapperTest {

	public static void main(String[] args) {
		Sourceable source1 = new SourceSub1();
		Sourceable source2 = new SourceSub2();
		
		source1.method1();
		source1.method2();
		source2.method1();
		source2.method2();
	}
}

测试输出:

the sourceable interface's first Sub1!

the sourceable interface's second Sub2!

达到了我们的效果!

 讲了这么多,总结一下三种适配器模式的应用场景:

类的适配器模式:当希望将一个类转换成满足另一个新接口的类时,可以使用类的适配器模式,创建一个新类,继承原有的类,实现新的接口即可。

对象的适配器模式:当希望将一个对象转换成满足另一个新接口的对象时,可以创建一个Wrapper类,持有原类的一个实例,在Wrapper类的方法中,调用实例的方法就行。

接口的适配器模式:当不希望实现一个接口中所有的方法时,可以创建一个抽象类Wrapper,实现所有方法,我们写别的类的时候,继承抽象类即可。

7、装饰模式(Decorator)

顾名思义,装饰模式就是给一个对象增加一些新的功能,而且是动态的,要求装饰对象和被装饰对象实现同一个接口,装饰对象持有被装饰对象的实例,关系图如下:

Source类是被装饰类,Decorator类是一个装饰类,可以为Source类动态的添加一些功能,代码如下:

public interface Sourceable {
	public void method();
}


public class Source implements Sourceable {

	@Override
	public void method() {
		System.out.println("the original method!");
	}
}


public class Decorator implements Sourceable {

	private Sourceable source;
	
	public Decorator(Sourceable source){
		super();
		this.source = source;
	}
	@Override
	public void method() {
		System.out.println("before decorator!");
		source.method();
		System.out.println("after decorator!");
	}
}

测试类:

public class DecoratorTest {

	public static void main(String[] args) {
		Sourceable source = new Source();
		Sourceable obj = new Decorator(source);
		obj.method();
	}
}

输出:

before decorator!

the original method!

after decorator!

装饰器模式的应用场景:

1、需要扩展一个类的功能。

2、动态的为一个对象增加功能,而且还能动态撤销。(继承不能做到这一点,继承的功能是静态的,不能动态增删。)

缺点:产生过多相似的对象,不易排错!

8、代理模式(Proxy)

其实每个模式名称就表明了该模式的作用,代理模式就是多一个代理类出来,替原对象进行一些操作,比如我们在租房子的时候回去找中介,为什么呢?因为你对该地区房屋的信息掌握的不够全面,希望找一个更熟悉的人去帮你做,此处的代理就是这个意思。再如我们有的时候打官司,我们需要请律师,因为律师在法律方面有专长,可以替我们进行操作,表达我们的想法。先来看看关系图:

根据上文的阐述,代理模式就比较容易的理解了,我们看下代码:

public interface Sourceable {
	public void method();
}


public class Source implements Sourceable {

	@Override
	public void method() {
		System.out.println("the original method!");
	}
}


public class Proxy implements Sourceable {

	private Source source;
	public Proxy(){
		super();
		this.source = new Source();
	}
	@Override
	public void method() {
		before();
		source.method();
		atfer();
	}
	private void atfer() {
		System.out.println("after proxy!");
	}
	private void before() {
		System.out.println("before proxy!");
	}
}

测试类:

public class ProxyTest {

	public static void main(String[] args) {
		Sourceable source = new Proxy();
		source.method();
	}

}

输出:

before proxy!

the original method!

after proxy!

代理模式的应用场景:

如果已有的方法在使用的时候需要对原有的方法进行改进,此时有两种办法:

1、修改原有的方法来适应。这样违反了“对扩展开放,对修改关闭”的原则。

2、就是采用一个代理类调用原有的方法,且对产生的结果进行控制。这种方法就是代理模式。

使用代理模式,可以将功能划分的更加清晰,有助于后期维护!

9、外观模式(Facade)

外观模式是为了解决类与类之家的依赖关系的,像spring一样,可以将类和类之间的关系配置到配置文件中,而外观模式就是将他们的关系放在一个Facade类中,降低了类类之间的耦合度,该模式中没有涉及到接口,看下类图:(我们以一个计算机的启动过程为例)

我们先看下实现类:

public class CPU {
	
	public void startup(){
		System.out.println("cpu startup!");
	}
	
	public void shutdown(){
		System.out.println("cpu shutdown!");
	}
}


public class Memory {
	
	public void startup(){
		System.out.println("memory startup!");
	}
	
	public void shutdown(){
		System.out.println("memory shutdown!");
	}
}


public class Disk {
	
	public void startup(){
		System.out.println("disk startup!");
	}
	
	public void shutdown(){
		System.out.println("disk shutdown!");
	}
}


public class Computer {
	private CPU cpu;
	private Memory memory;
	private Disk disk;
	
	public Computer(){
		cpu = new CPU();
		memory = new Memory();
		disk = new Disk();
	}
	
	public void startup(){
		System.out.println("start the computer!");
		cpu.startup();
		memory.startup();
		disk.startup();
		System.out.println("start computer finished!");
	}
	
	public void shutdown(){
		System.out.println("begin to close the computer!");
		cpu.shutdown();
		memory.shutdown();
		disk.shutdown();
		System.out.println("computer closed!");
	}
}

User类如下:

public class User {

	public static void main(String[] args) {
		Computer computer = new Computer();
		computer.startup();
		computer.shutdown();
	}
}

输出:

start the computer!

cpu startup!

memory startup!

disk startup!

start computer finished!

begin to close the computer!

cpu shutdown!

memory shutdown!

disk shutdown!

computer closed!

如果我们没有Computer类,那么,CPU、Memory、Disk他们之间将会相互持有实例,产生关系,这样会造成严重的依赖,修改一个类,可能会带来其他类的修改,这不是我们想要看到的,有了Computer类,他们之间的关系被放在了Computer类里,这样就起到了解耦的作用,这,就是外观模式!

10、桥接模式(Bridge)

桥接模式就是把事物和其具体实现分开,使他们可以各自独立的变化。桥接的用意是:将抽象化与实现化解耦,使得二者可以独立变化,像我们常用的JDBC桥DriverManager一样,JDBC进行连接数据库的时候,在各个数据库之间进行切换,基本不需要动太多的代码,甚至丝毫不用动,原因就是JDBC提供统一接口,每个数据库提供各自的实现,用一个叫做数据库驱动的程序来桥接就行了。我们来看看关系图:

实现代码:

先定义接口:

public interface Sourceable {
	public void method();
}

分别定义两个实现类:

public class SourceSub1 implements Sourceable {

	@Override
	public void method() {
		System.out.println("this is the first sub!");
	}
}


public class SourceSub2 implements Sourceable {

	@Override
	public void method() {
		System.out.println("this is the second sub!");
	}
}

定义一个桥,持有Sourceable的一个实例:

public abstract class Bridge {
	private Sourceable source;

	public void method(){
		source.method();
	}
	
	public Sourceable getSource() {
		return source;
	}

	public void setSource(Sourceable source) {
		this.source = source;
	}
}


public class MyBridge extends Bridge {
	public void method(){
		getSource().method();
	}
}

测试类:

public class BridgeTest {
	
	public static void main(String[] args) {
		
		Bridge bridge = new MyBridge();
		
		/*调用第一个对象*/
		Sourceable source1 = new SourceSub1();
		bridge.setSource(source1);
		bridge.method();
		
		/*调用第二个对象*/
		Sourceable source2 = new SourceSub2();
		bridge.setSource(source2);
		bridge.method();
	}
}

output:

this is the first sub!
this is the second sub!

这样,就通过对Bridge类的调用,实现了对接口Sourceable的实现类SourceSub1和SourceSub2的调用。接下来我再画个图,大家就应该明白了,因为这个图是我们JDBC连接的原理,有数据库学习基础的,一结合就都懂了。

11、组合模式(Composite)

组合模式有时又叫部分-整体模式在处理类似树形结构的问题时比较方便,看看关系图:

直接来看代码:

//V型知识库 www.vxzsk.com
public class TreeNode {
	
	private String name;
	private TreeNode parent;
	private Vector<TreeNode> children = new Vector<TreeNode>();
	
	public TreeNode(String name){
		this.name = name;
	}

	public String getName() {
		return name;
	}

	public void setName(String name) {
		this.name = name;
	}

	public TreeNode getParent() {
		return parent;
	}

	public void setParent(TreeNode parent) {
		this.parent = parent;
	}
	
	//添加孩子节点
	public void add(TreeNode node){
		children.add(node);
	}
	
	//删除孩子节点
	public void remove(TreeNode node){
		children.remove(node);
	}
	
	//取得孩子节点
	public Enumeration<TreeNode> getChildren(){
		return children.elements();
	}
}


public class Tree {

	TreeNode root = null;

	public Tree(String name) {
		root = new TreeNode(name);
	}

	public static void main(String[] args) {
		Tree tree = new Tree("A");
		TreeNode nodeB = new TreeNode("B");
		TreeNode nodeC = new TreeNode("C");
		
		nodeB.add(nodeC);
		tree.root.add(nodeB);
		System.out.println("build the tree finished!");
	}
}

使用场景:将多个对象组合在一起进行操作,常用于表示树形结构中,例如二叉树,数等。

12、享元模式(Flyweight)

享元模式的主要目的是实现对象的共享,即共享池,当系统中对象多的时候可以减少内存的开销,通常与工厂模式一起使用。

FlyWeightFactory负责创建和管理享元单元,当一个客户端请求时,工厂需要检查当前对象池中是否有符合条件的对象,如果有,就返回已经存在的对象,如果没有,则创建一个新对象,FlyWeight是超类。一提到共享池,我们很容易联想到Java里面的JDBC连接池,想想每个连接的特点,我们不难总结出:适用于作共享的一些个对象,他们有一些共有的属性,就拿数据库连接池来说,url、driverClassName、username、password及dbname,这些属性对于每个连接来说都是一样的,所以就适合用享元模式来处理,建一个工厂类,将上述类似属性作为内部数据,其它的作为外部数据,在方法调用时,当做参数传进来,这样就节省了空间,减少了实例的数量。

看下数据库连接池的代码:

public class ConnectionPool {
	
	private Vector<Connection> pool;
	
	/*公有属性*/
	private String url = "jdbc:mysql://localhost:3306/test";
	private String username = "root";
	private String password = "root";
	private String driverClassName = "com.mysql.jdbc.Driver";

	private int poolSize = 100;
	private static ConnectionPool instance = null;
	Connection conn = null;

	/*构造方法,做一些初始化工作*/
	private ConnectionPool() {
		pool = new Vector<Connection>(poolSize);

		for (int i = 0; i < poolSize; i++) {
			try {
				Class.forName(driverClassName);
				conn = DriverManager.getConnection(url, username, password);
				pool.add(conn);
			} catch (ClassNotFoundException e) {
				e.printStackTrace();
			} catch (SQLException e) {
				e.printStackTrace();
			}
		}
	}

	/* 返回连接到连接池 */
	public synchronized void release() {
		pool.add(conn);
	}

	/* 返回连接池中的一个数据库连接 */
	public synchronized Connection getConnection() {
		if (pool.size() > 0) {
			Connection conn = pool.get(0);
			pool.remove(conn);
			return conn;
		} else {
			return null;
		}
	}
}

通过连接池的管理,实现了数据库连接的共享,不需要每一次都重新创建连接,节省了数据库重新创建的开销,提升了系统的性能!本章讲解了7种结构型模式,因为篇幅的问题,剩下的11种行为型模式,我们将另起篇章,敬请读者朋友们持续关注!

好了,至此结构型模式,共七种:适配器模式、装饰器模式、代理模式、外观模式、桥接模式、组合模式、享元模式。已经讲解完毕。




小说《我是全球混乱的源头》

感觉本站内容不错,读后有收获?小额赞助,鼓励网站分享出更好的教程